1 Scleral Lenses 101

-the basics and beyond

Julie DeKinder, O.D. FAAO, FSLS

Diplomate, Cornea, Contact Lenses and Refractive Technologies

2 Overview

- Clinical Indications
- Advantages and Challenges
- Terminology
- Anterior eye anatomy
- Basic Design Features
- Instrumentation
- Fitting basics lens selection, fitting, evaluation, follow-up
- Tips and Troubleshooting

3 Clinical Indications

- Vision Improvement
 - Correcting the irregular cornea
 - Corneal Ectasia
 - *—Primary Keratoconus, Keratoglobus, Pellucid marginal degeneration (INTACS, CXL) —Secondary – post-refractive surgery, corneal trauma*
 - Corneal Transplant
 - Corneal Degenerations
 - Normal Cornea
 - Presbyopia, moderate to high corneal astigmatism
- .

4 Clinical Indications

- Ocular Surface Protection
 - Dry Eye
 - Incomplete lid closure
 - Sjorgen's Syndrome
 - Stevens-Johnson Syndrome
 - RCE / corneal abrasions
 - Graft host disease
 - Infiltrative keratitis

5 Persistent corneal epithelial defects

• Epithelium-off CXL (16 year old male)

- Constant epithelial defect for 2 months
 - Neomycin/dexamethasone, Zirgan, Oflaxacin, doxycycline, acyclovir, AT, BCL
- Applied a scleral contact (15.6 diameter)
 - Wore extended wear for 6 days
 - Cont Maxitrol and oflaxacin drops
- Lens removed after 6 days of wear
 - epithelial defect healed
 - overlying corneal haze

6 Corneal Abrasion

- Healing response attributed:
 - Oxygenation
 - Moisture
 - Constant tear film
 - Protection of the corneal epithelium
 - Minimal abrasion
- Allows epithelium to migrate, adhere, and proliferate over the persistent epithelial defect.

7 Clinical Indications

- Cosmetic/Sports
 - Hand-painted scleral lenses
 - Ptosis
 - Water sports
- Lens failure in other designs

8

Advantages of Scleral GPs vs Corneal GP

- Centration
 - Fitting a "regular" part of the eye
- Lens Retention
 - Minimal chance of inferior standoff
- Comfort
 - Reduced lid interaction; no corneal interaction
- Vision
 - Masking severe corneal irregularity

9 Challenges associated with scleral lenses

- Handling
 - Difficult I and R (initially)
 - Apprehensive patients
- Fitting

- Subtle fit indications
- Increased chair time
- Physiology
 - Dk/L Oxygen must diffuse over great distance
 - -Long-term effects of scleral lens wear are unknown

10 Terminology

- Classification
- - Corneo-scleral 12.9mm to 13.5mm
 - Semi-Scleral 13.6 mm to 14.9mm
 - Mini-Scleral 15.0mm to 18.00mm
 - Full-Scleral 18.1mm to 24+
- 11 Terminology

12 Anatomy and Shape of the Anterior Ocular Surface

- Maximum scleral lens size
- for normal eye: 24mm
- Scleral Shape Study

13 Anatomy and Shape of the Anterior Ocular Surface

- · Corneal Toricity does not typically extend to sclera
- The ocular surface beyond the cornea is nonrotationally symmetrical – Asymmetrical
 - The entire nasal portion typically flatter compared to the rest

.

•

14 Anatomy and Shape of the Anterior Ocular Surface

- Clinical Consequences
 - Temporal-Inferior decentration of scleral lenses
 - Inferior decentration
 - -Weight/gravity
 - Eyelid pressure
 - Temporal
 - -Flatter nasal elevation
- Conjunctival Prolapse

15 Basic Design Features

- Spherical Design
 - Concentric symmetrical (spherical) scleral lens
 - Non-toric back surface
 - Optic Zone
 - Centermost zone

- Optics/Lens power
 - -Anterior surface
- Back surface
 - -Ideally mimics corneal shape
- Completely vaults cornea

16 Basic Design Features

- Spherical Design
 - Concentric symmetrical (spherical) scleral lens
 - Non-toric back surface
 - •
 - Transition Zone
 - Mid-periphery or limbal zone
 - Creates the sagittal height
 - Can be reserve geometry
 - Completely vaults limbus

17 Basic Design Features

- Spherical Design
 - · Concentric symmetrical (spherical) scleral lens
 - Non-toric back surface

- Landing Zone
 - Area of the lens that rests on anterior ocular surface
 - Scleral zone or haptic
 - Alignment to provide even pressure distribution is key

18 Basic Design Features

19 Basic Design Features

- Toric Lens Designs
 - Front Surface Toric -
 - Anterior surface front toric optics to improve vision
 - Located on the front surface of the central optical zone
 - Indicated when residual cylinder over-refraction is found
 - Needs stabilization
 - -Dynamic stabilization zones or prism ballast
 - -LARS
- 20 Basic Design Features
 - Toric Lens Designs
 - Back Toric Haptics
 - · Landing zone is made toric to improve lens fit

- Does not interfere with central zone of scleral lens
- Better ocular health
 - -Fewer areas of localized pressure
 - -Decreased bubble formation
 - -Longer wearing time and better patient comfort
- · More frequently needed in larger diameter sclerals

21 Basic Design Features

- Toric Lens Designs
 - Bitoric both anterior optics and back toric haptics
 - Front surface toric optical power
 - Back surface toric periphery
 - No need for lens stabilization

22

23 Basic Design Features

- Multifocal Scleral lens design
- - Simultaneous Multifocal Lens Design
 - Aspheric or concentric
 - Center Near and Center Distance Designs
 - -Can adjust near powers
 - -Can adjust zone size
 - Not all scleral lens designs have a MF option

24 Basic Design Features

- Multifocal Scleral lens design
- •

25 Basic Design Features

- Lens Material
 - High(est) Dk lens material; plasma or hydra-PEG
 - Considerably thicker when compared to corneal GP
 - -250 microns to 500 microns
 - Optimum Extreme, Menicon Z
- Increasing Oxygen transmissibility
 - 1. high Dk material (Dk > 125)
 - -2. minimal tear clearance behind the lens (<200)
 - -3. Reduced center thickness of the lens (<.250)

26 Fitting Basics

- Hydra-PEG
 - Polyethylene glycol (PEG) base polymer
 - Covalently bonded to the lens surface
 - Creates a wetting ocular surface, increases surface wettability, increases lubricity,

decreases protein and lipid deposits, improves TBUT.

- 27 Fitting Basics
 - Completely vault the cornea and limbus while aligning to the bulbar conjunctiva

28 Fitting Basics

29 Fitting Basics

- 1. Diameter
- 2. Clearance
- 3. Landing Zone Fit
- 4. Lens Edge
- 5. Asymmetrical Back Surface Design
 - Some trial sets are toric back surface
- 6. Lens Power

30 Fitting Basics

- 1. Diameter
 - Choose a Fitting Set
 - Direct vs Indirect control
 - Laboratory warranty/exchange policy
 - Overall Diameter
 - Larger more clearance needed, ectasias
 - Smaller easier to handle, less clearance

31 Fitting Basics

- 1. Diameter
 - HVID
 - <12mm
 - -Start with a 16.0 mm or smaller lens
 - >12mm
 - -Start with a 16.0 mm or larger lens

 Diameter of the optical zone and the transition zone chosen roughly 0.2mm larger than the corneal diameter

32 Fitting Basics

- 2. Clearance
 - Minimum of ~100 microns
 - Typically aim for 200-300 microns after settling
 - Maximum of 600 (if desired)
 - -
 - Base Curve Determination
 - Select an initial base curve that is flatter than the flat k value
 - Use 14 mm chord OCT, measure sagittal depth

33 Fitting Basics

- · Evaluate overall corneal chamber appearance
 - Diffuse beam, low mag, medium illumination
 - Observe centration, areas of bearing, tear lens appearance, look for bubbles

34 Fitting Basics

35 Fitting Basics

- Evaluate central clearance
- 36 Fitting Basics
- 37 Fitting Basics
- 38 Fitting Basics

39 Fitting Basics

- Change lens base curve/sagittal depth until desired central clearance is reached – Considerations:
 - All scleral lenses will settle over a period of hours
 - Expect ~ 90 to 150 microns settling
 - Aim for 150 to 300 microns after settling
 - Build-in settling time into fitting session ~30 min

40 Fitting Basics

- UMSL Study:
 - No significant settling after 4 hours of wear
 - Most settling within the 1st hour
 - Large Diameter Scleral settle ~90 microns, slower
 - Mini Scleral ~130 microns, faster
- 41 Fitting Basics

_

- Evaluate remaining corneal chamber
 - Optic Section
 - Sweep limbus to limbus noting tear lens thickness
 - Looking for tears in optic section beyond the limbus and should increase in thickness toward the central cornea
 - ** Adequate limbal clearance is critical for an acceptable fit and good tear exchange**

42 Fitting Basics

Anterior Segment OCT

43 Fitting Basics

Anterior
 Segment OCT

44 Anterior Seg OCT

- •
- •
- •
- •
- •
- •

45 Fitting Basics

- 3/4. Landing Zone Fit/Edge
 - Bulbar conjunctival vessels
 - Look for blanching
 - Inappropriate scleral curve alignment
 - Typically indicates PC is too tight
 - Or new toric back surface haptics
 - Confirm no lens movement
 - Perform all peripheral lens evaluations in Primary Gaze.
- Ideal alignment when vessels course unobstructed under the scleral curves
- 46 Fitting Basics
- 47 Fitting Basics
- 48 Fitting Basics
 - Anterior Segment OCT

49 Fitting Basics

- 5. Asymmetrical Back Surface Design
 - Allows for more equal pressure distribution
 - Can help center a inferiorly decentered lens
 - Flat and steep meridian
 - Can adjust either independently
 - Flat meridian is typically marked
 - Will lock into place

50 Fitting Basics

- 6. Lens Power/Over-Refraction
 - Expect close to spherical OR
 - If OR yields significant cylinder check flexure
 - Do over-keratometry or over-topography
 - Residual Cylinder

- Front surface toric
- Usually has a great visual outcome

51 Fitting Basics

- Design and Order
 - Often lens modifications will need to be made from the best trial lens fit
 - Lab Consultants are helpful
 - Some warranties require consultation when re-ordering

52 Fitting Basics

Scleral Lens Handling

- Insertion
 - Prepare Lens
 - Large DMV
 - Clean lens, rinse
 - Fill with non-preserved sol
 - 0.9% NaCl inhalation sol
 - Off label: Addipak, Modudose
 - Lacripure, ScleralFil (buffered)
 - Refresh Optive single vials
 - Celluvisc
- 53 **Is buffered better??**
- 54 Fitting Basics Scleral Lens Handling

55 Fitting Basics

Lens Insertion

- Place paper towels on patient's lap
- · Have patient tuck chin to chest and look straight down
- Have patient hold lower lid
- Clinician hold upper lid
- · Insert lens straight onto cornea

56 Fitting Basics Scleral Lens Handling

- 57 Fitting Basics Lens Application
- 58 Fitting Basics
 - Scleral Lens Handling
 - Removal
 - Loosen Lens gently nudge lens

– Medium DMV

• placed on inferior portion of lens

– Hold both lids

59 Fitting Basics Lens Removal

- 60 Fitting Basics Scleral Lens Handling
- 61 Fitting Basics Scleral Lens Handling
 - Educate patient about proper lens orientation upon insertion – Dots at 6 o'clock

62 Parameter Considerations

- Common Parameter Changes:
 - Sagittal Height
 - Overall diameter (OAD)
 - Optic Zone Diameter (OZD)
 - Base Curve (BC)
 - PC width
 - PC radius of curvature
 - Center Thickness

63 Parameter Considerations

- Common Parameter Changes:
 - Sagittal Height
 - Adjustment to the transition zone
 - Allows clinician to increase or decrease central lens clearance without adjusting base curve or peripheral lens curves
 - Indicate to lab the amount of clearance you want to gain or lose

•

64 Patient GH

- Fit in 2013
- -OD: 7.50 / -7.00 / 14.5 20/50
- -OS: 7.5 / -7.50 / 14.5 20/40
- SLE: central touch in both eyes
 - Increase diameter; increase sagittal height; steepen lens

65 Patient GH

- New Scleral Lens
 - OD: 7.5 / 14.8 / -7.50 -1.25 x 013 20/30
 - -1.5 steep limbal zone
 - OS: 7.18 / 14.8 / -8.25 -0.75 x 162 20/40+

-1 step flat limbal zone; 1 step flat scleral zone

66 **Parameter Considerations**

- Common Parameter Changes:
 - Overall diameter (OAD) / Optic Zone Diameter (OZD)
 - Can increase or decrease
 - -More likely to increase
 - If you need additional central clearance
 –Can increase OZD which will increase OAD
 - If you need more clearance at limbus
 - -Can increase OZD which will increase OAD

67 **Parameter Considerations**

OZD changes: often done to improve fit

 OZD increase <u>without</u> BC compensation

68 Parameter Considerations

Increase OZD <u>with</u> BC compensation

69 **Parameter Considerations**

- Common Parameter Changes:
 - Base Curve (BC)
 - Typically adjusted during initial fit
 - Flatter base curve to address peripheral lens tightness or excessive central clearance
 - Steeper base curve to increase central clearance or loose periphery
 - If you need to adjust the central clearance, but you are happy with peripheral alignment
 - Adjust sagittal height NOT base curve

70 **Parameter Considerations**

- Common Parameter Changes:
 - PC width / PC radius of curvature
 - Make wider or smaller
 - Steeper or flatter
 - Toric Haptics
 - Center Thickness
 - Can increase or decrease
 - -Considerations: flexure and edema
 - •

71 **Parameter Considerations**

• Scleral Curve Changes

72 **Tips for Fitting**

• 1. Go flatter than flat K value for initial lens selection

8/16/2019

- 2. Use Fluorescein for initial lens selection
 - Use BLUE Light GET THE BIG PICTURE
 - Use WHITE Light to evaluate everything else
- 3. Analyze Superior and Inferior lens edges in Primary Gaze
- 4. Try not to make parameter changes at dispensing
- 5. Toric Haptics spin lens and watch for quick return

73 Tips for Follow-up

- 1. Ask patient: "How do you take care of your lenses"
- 2. Follow-up should be at least 2 hours after lens insertion
- 3. Paint the front of the lens to look for fluid exchange
- .
 - 4. Remove lens and evaluate cornea

74 Troubleshooting

- Problem: <u>Decreased vision after insertion</u>
 - Often caused by mucin build-up in tear lens
 - Begins ~30min to 4 hrs after insertion
- Possible Solutions
 - Reinsert lens with fresh solution/ use solution mixture
 - Rx lid hygiene
 - Rinse eye prior to insertion
 - Refit with decreased central clearance/better peripheral alignment
 - Change lens material or Lens coating Hydra-PEG

75 Troubleshooting

• Decreased Vision after Insertion

76 Troubleshooting

• Conjunctival Prolapse

77 Troubleshooting

Conjunctival Prolapse

- Caused by negative pressure under the lens
- More prominent in patients with loose conjunctival tissue or elderly patients
- Check for neovascularization
- Solution

- 1. Fit a asymmetrical back surface scleral lens to help alleviate the problem
- -2. Decrease limbal clearance

Conjunctival Prolapse

• Prolapse with tight

PC

– Flatten the PC

79 Troubleshooting

Conjunctival Prolapse

- Prolapse with peripheral alignment
 - Decrease the
 - limbal clearance
 - -2 ways:
 - Flatten the BC
 - Decrease the reverse
 - curve

80 Troubleshooting

- Problem: Diffuse Corneal Staining on follow-up
 - Due to fill media, care systems, AT's or meds
 - Can be difficult to isolate cause
 - Can be more significant if tear exchange is low
- Possible solutions:
 - Switch Care systems
 - Rx 0.9%NaCl inhalation solution
 - Completely rinse MPS off lens
 - Confirm compliance with prescribed care

81 A severe case of stain

- -27 yo patient with Keratoconus OU
 - Wearing scleral lens OU 2014
 - Hx of Corneal Crosslinking OU ('09)
- Presents 7/2017
 - Cc: blurred vision OS> OD
 - using clear care to clean lenses
 - sometimes sleeps in lenses
 - uses Boston Advance to fill lenses prior to insertion

82 A severe case of stain

• 27 yo patient with Keratoconus OU

- VA 20/30- OD 20/125 OS
- SLE: Punctate staining OU, mild corneal edema OS
- 150 microns clearance OU
- Adequate limbal clearance
- No peripheral blanching or impingement
- Plan: educated patient about proper lens care; RTC 1 week fitting

- Problem: Poor surface wetting
 - MGD can contribute / cause problem
 - Multipurpose Solution (MPS) may cause problems
 - Lens Material
- Possible Solutions:
 - Evaluate lid margins/ tear film
 - Prescribe lid hygiene if necessary
 - Change MPS / Lens material
 - Lens Coating hydra-PEG

84 **Troubleshooting**

- Problem: Poor surface wetting (old lens)
 - Lens Coating break-down
 - Lens Material break-down
 - _
- Possible Solutions:
 - Order new lenses (with HydraPEG)
 - Clean with laboratory cleaner
 - Prescribe Progent

85 **Troubleshooting**

- Problem: Corneal edema at follow-up
 - Can arise after weeks / months => f/u is important!
 - More common in post PK corneas
 - Higher risk in corneas with low endothelial cell count
 - Consider Dk/L as Dk is likely not the issue
- Possible Solutions:
 - Prevention: do endothelial cell count before fitting (1000 +?)
 - Scrutinize grafts at every visit!
 - Educate graft patients on symptoms of rejection: pain, light sensitivity, redness, blurred vision

86

•

87 Troubleshooting

- Keratoconus and Fuchs! Oh My!
- 64 you Female with Keratoconus
 - Presents with blurry vision in scleral lenses and irritation OU
 - Lenses are uncomfortable and dry
 - Redness OU
 - Interested in Eyeprint PRO
 - -20/40- OD 20/30- OS HVID 12mm
 - OD: +0.75 -4.00 x 175 20/40- OS: +1.50 -3.50 x 180 20/30-
 - Pingecula Temporal and Nasal OU

• P

88 Case TS: KCN and Fuchs

- Initial FITTING
- HVID 12mm; Pingecula T/N OU
 - -8.4 base curve 4.6 sagittal height 17.0 diameter
 - OR: +3.75 -0.75 x 180 20/25-- +4.00 -0.75 x 180 20/30
- Options to Troubleshoot Pingecula:
 - Microvault
 - Toric PC
- •

89 Case TS: KCN and Fuchs

•

90 Case TS: KCN and Fuchs

- Keratoconus and Fuchs! Oh My!
 - At one year follow-up

91 Case TS: KCN and Fuchs

- Toric Haptics/Peripheral Curves
 - Steepen the Vertical meridian to relieve pressure in the horizontal
 - Flatten the hortizonal meridian
 - Always evaluate the location of the flat meridian markings

_

- MicroVault
 - Confirm lens design can incorporate microvaults
 - Measure location and size
- 92 **Troubleshooting**
 - Problem: Discomfort immediately after insertion
 - -Ask patient where discomfort is located
 - Poor peripheral fit too flat
 - Base curve too flat- central bearing or touch
 - Mucus adhered to back surface of lens
 - -
 - Possible solutions:
 - Adjust peripheral systems for proper alignment
 - Select steeper base curve
 - Clean inside of bowl daily; prescribe Progent (Menicon) to remove mucus
 - •

- Problem: Discomfort after several hours of wear
 - Follow-up patient questions
 - Does your eye become red while wearing the lens?
 - Does your eye become red after lens removal?
 - Where is the irritation located?
 - Do you notice any changes in your vision?
 - What solution(s) are you using for lens application?

94 Troubleshooting

- Problem: Discomfort after several hours of wear
 - Poor peripheral fit (too steep)
 - Lens is too small to support its weight
 - Corneal chamber too small
 - -
- Possible solutions:
 - Adjust peripheral systems for proper alignment
 - Increase surface area of scleral curves
 - Increase OAD or corneal chamber size if appropriate

95 Troubleshooting

- Problem: Lens hurts upon removal with subsequent difficulty wearing it the next day
 - Poor peripheral fit scleral compression
 - Causing rebound hyperemia and inflammation
 - •

- Possible solutions:
 - Changing Diameter
 - Changing peripheral curves

.

- Problem: Bubbles under the lens
- Too much sagittal height/Too flat peripheral curves
 - Improper insertion
 - Fenestration hole
 - -
- Possible Solutions:
 - Fill bowl completely with solution prior to insertion
 - Remove fenestration hole
 - Central bubble: Adjust lens parameters to decrease sagittal height
 - Peripheral bubbles: steepen peripheral curves or increase lens diameter

97 Patient AB

- History: KCN OU; crosslinking OU
- Lens history: soft toric lenses
- •

98 Patient AB

• Examination findings

– MR:

- OD +0.75 -3.50 x 060 20/70+
- OS -0.25 -0.75 x 142 20/100+

- Lens options

- Specialty Corneal lens
 - -Patient attempted to wear and could not adapt
- Intralimbal design
 - -Patient attempted to wear and could not adapt
- Scleral Lens

99 Patient AB

100 Patient AB

101 **Final Thoughts**

- Consider mini-scleral / scleral for appropriate patients – Select one lab, one design
- First couple fits are the most challenging
- Scleral lenses are not going away
- Consultants are a great resource
- Huge practice building opportunity

8/16/2019

•