

Overview

- Clinical Indications
- Advantages and Challenges
- Terminology
- Anterior eye anatomy
- **Basic Design Features**
- Instrumentation
- Fitting basics lens selection, fitting, evaluation, follow-up
- Tips and Troubleshooting

UMSL Optometry

Clinical Indications

- Vision Improvement
 - Correcting the irregular cornea
 - · Corneal Ectasia
 - Primary Keratoconus, Keratoglobus, Pellucid marginal degeneration (INTACS, CXL)
 - Secondary post-refractive surgery, corneal trauma
 - · Corneal Transplant
 - Corneal Degenerations
 - Normal Cornea

Clinical Indications

- · Ocular Surface Protection
 - Dry Eye
 - Incomplete lid closure
 - Sjorgen's Syndrome
 - Stevens-Johnson Syndrome
 - RCE / corneal abrasions
 - Graft host disease
 - Infiltrative keratitis

Patient with Steven s-Johnson Syndrome; photo courtesy of Beth Kinoshita, O.D.

UMSL Optometry

Persistent corneal epithelial defects

- Epithelium-off CXL (16 year old male)
 - Constant epithelial defect for 2 months
 - Neomycin/dexamethasone, Zirgan, Oflaxacin, doxycycline, acyclovir, AT, BCL
 - Applied a scleral contact (15.6 diameter)
 - Wore extended wear for 6 days
 - · Cont Maxitrol and oflaxacin drops
 - Lens removed after 6 days of wear
 - · epithelial defect healed
 - · overlying corneal haze

UMSL Optometry

Corneal Abrasion

- Healing response attributed:
 - Oxygenation
 - Moisture
 - · Constant tear film
 - Protection of the corneal epithelium
 - Minimal abrasion
- · Allows epithelium to migrate, adhere, and proliferate over the persistent epithelial defect.

Clinical Indications

- · Cosmetic/Sports
 - Hand-painted scleral lenses
 - Ptosis
 - Water sports

Advantages of Scleral GPs vs Corneal GP

- Centration
 - Fitting a "regular" part of the eye
- Lens Retention
 - Minimal chance of inferior standoff
- Comfort
 - Reduced lid interaction; no corneal interaction
- Vision

Masking severe corneal irregularity

UMSL Optometry

Challenges associated with scleral lenses

- Handling
 - Difficult I and R (initially)
 - Apprehensive patients
- Fitting
 - Subtle fit indications
 - Increased chair time
- Physiology
 - Dk/L Oxygen must diffuse over great distance
 - Long-term effects of scleral lens wear are unknown

UMSL Optometry

Terminology

• Classification

 - Corneo-scleral
 12.9mm to 13.5mm

 - Semi-Scleral
 13.6 mm to 14.9mm

 - Mini-Scleral
 15.0mm to 18.00mm

 - Full-Scleral
 18.1mm to 24+

UMSL Optometry

Terminology

Lens Type	Description	Definition of Bearing Area
Corneal		Lens rests entirely on the cornea
Corneo-scleral		Lens rests partly on the cornea, partly on the sclera
Scleral	Mini-Scleral Lens is up to 6mm larger than HVID	Lens rests entirely on the sclera
	Large Scleral Lens is more than 6mm larger than HVID	

Scleral Lens Education Society
June 2013

UMSL Optometry

Anatomy and Shape of the Anterior Ocular Surface

 Maximum scleral lens size for normal eye: 24mm

Scleral Shape Study

Assuming 12mm cornea diameter – maximum physical diameter of a scleral lens ~24 mm

Anatomy and Shape of the Anterior Ocular Surface

- Corneal Toricity does not typically extend to sclera
- The ocular surface beyond the cornea is nonrotationally symmetrical
 - Asymmetrical
 - The entire nasal portion typically flatter compared to the rest

UMSL Optometry

UMSL Optometry

Anatomy and Shape of the Anterior Ocular Surface

- Clinical Consequences
 - Temporal-Inferior decentration of scleral lenses
 - Inferior decentration
 - Weight/gravity
 - Eyelid pressure
 - Temporal
 - Flatter nasal elevation
- Conjunctival Prolapse

UMSL Optometry

• Spherical Design • Concentric symmetrical (spherical) scleral lens • Non-toric back surface - Optic Zone • Centermost zone • Optics/Lens power - Anterior surface • Back surface • Ideally mimics corneal shape • Completely vaults cornea

Basic Design Features • Spherical Design • Concentric symmetrical (spherical) scleral lens • Non-toric back surface — Transition Zone • Mid-periphery or limbal zone • Creates the sagittal height • Can be reserve geometry • Completely vaults limbus

Basic Design Features

- · Toric Lens Designs
 - Front Surface Toric -
 - Anterior surface front toric optics to improve vision
 - Located on the front surface of the central optical zone
 - Indicated when residual cylinder over-refraction is found
 - · Needs stabilization
 - Dynamic stabilization zones or prism ballast
 - LARS

UMSL Optometry

Basic Design Features

- · Toric Lens Designs
 - Back Toric Haptics
 - Landing zone is made toric to improve lens fit
 - Does not interfere with central zone of scleral lens
 - · Better ocular health
 - Fewer areas of localized pressure
 - Decreased bubble formation
 - Longer wearing time and better patient comfort
 - More frequently needed in larger diameter sclerals

Basic Design Features

- · Toric Lens Designs
 - Bitoric both anterior optics and back toric haptics
 - Front surface toric optical power
 - Back surface toric periphery
 - No need for lens stabilization

UMSL Optometry

Basic Design Features

- Multifocal Scleral lens design
 - Simultaneous Multifocal Lens Design
 - Aspheric or concentric
 - Center Near and Center Distance Designs
 - Can adjust near powers
 - Can adjust zone size
 - Not all scleral lens designs have a MF option

Basic Design Features

- · Lens Material
 - High(est) Dk lens material; plasma or hydra-PEG
 - Considerably thicker when compared to corneal GP
 250 microns to 500 microns
 - Optimum Extreme, Menicon Z
- · Increasing Oxygen transmissibility
 - 1. high Dk material (Dk > 125)
 - 2. minimal tear clearance behind the lens (<200)
 - 3. Reduced center thickness of the lens (<.250)

UMSL Optometry

Fitting Basics • Hydra-PEG - Polyethylene glycol (PEG) – base polymer • Covalently bonded to the lens surface • Creates a wetting ocular surface, increases surface wettability, increases lubricity, decreases protein and lipid deposits, improves TBUT. Cleaning and disinfecting tangible solution to restore the coating

Fitting Basics • Completely vault the cornea and limbus while aligning to the bulbar conjunctiva * UMSL Optometry

Fitting Basics

- 1. Diameter
- · 2. Clearance
- 3. Landing Zone Fit
- 4. Lens Edge
- 5. Asymmetrical Back Surface Design
 - · Some trial sets are toric back surface
- 6. Lens Power

UMSL Optometry

Fitting Basics

- Laboratory warranty/exchange policy
- Overall Diameter
 - Larger more clearance needed, ectasias
 - Smaller easier to handle, less clearance

Fitting Basics

- · 1. Diameter
 - HVID
 - <12mm
 - Start with a 16.0 mm or smaller lens
 - >12mm
 - Start with a 16.0 mm or larger lens
 - Diameter of the optical zone and the transition zone chosen roughly 0.2mm larger than the corneal diameter

UMSL Optometry

Fitting Basics

- Minimum of ~100 microns
- Typically aim for 200-300 microns after settling
- Maximum of 600 (if desired)
- Base Curve Determination
 - Select an initial base curve that is flatter than the flat k value
 - Use 14 mm chord OCT, measure sagittal depth

UMSL Optometry

Fitting Basics • Evaluate overall corneal chamber appearance - Diffuse beam, low mag, medium illumination - Observe centration, areas of bearing, tear lens appearance, look for bubbles UMSL Optometry

Fitting Basics

- · Change lens base curve/sagittal depth until desired central clearance is reached
 - Considerations:
 - All scleral lenses will settle over a period of hours
 - Expect ~ 90 to 150 microns settling
 - Aim for 150 to 300 microns after settling
 - Build-in settling time into fitting session ~30 min

UMSL Optometry

Fitting Basics

- UMSL Study:
 - No significant settling after 4 hours of wear
 - Most settling within the 1st hour
 - − Large Diameter Scleral settle ~90 microns, slower
 - Mini Scleral ~130 microns, faster

UMSL Optometry

Fitting Basics

- · Evaluate remaining corneal chamber
 - Optic Section
 - Sweep limbus to limbus noting tear lens thickness
 - Looking for tears in optic section beyond the limbus and should increase in thickness toward the central cornea
 - ** Adequate limbal clearance is critical for an acceptable fit and good tear exchange **

UMSL Optometry

Fitting Basics Anterior Segment OCT

Fitting Basics

- 5. Asymmetrical Back Surface Design
 - Allows for more equal pressure distribution
 - Can help center a inferiorly decentered lens
 - Flat and steep meridian
 - Can adjust either independently
 - Flat meridian is typically marked
 - Will lock into place

Fitting Basics

- 6. Lens Power/Over-Refraction
 - Expect close to spherical OR
 - If OR yields significant cylinder check flexure
 - Do over-keratometry or over-topography
 - Residual Cylinder
 - Front surface toric
 - Usually has a great visual outcome

UMSL Optometry

Fitting Basics

- · Design and Order
 - Often lens modifications will need to be made from the best trial lens fit
 - Lab Consultants are helpful
 - Some warranties require consultation when re-ordering

UMSL Optometry

Fitting Basics Scleral Lens Handling

- Insertion
 - Prepare Lens
 - Large DMV
 - Clean lens, rinse

 Fill with non-preserved sol
 - 0.00/ NaCl inhalation an
 - 0.9% NaCl inhalation sol
 - Off label: Addipak, Modudose
 - Lacripure, ScleralFil (buffered)Refresh Optive single vials
 - Celluvisc

UMSL Optometry

Fitting Basics Lens Insertion

- Place paper towels on patient's lap
- Have patient tuck chin to chest and look straight down
- Have patient hold lower lid
- Clinician hold upper lid
- Insert lens straight onto cornea

UMSL Optometry

Fitting Basics Scleral Lens Handling WMSL Optometry

Fitting Basics Lens Application

Fitting Basics Scleral Lens Handling

- Removal
 - Loosen Lens gently nudge lens
 - Medium DMV
 - placed on inferior portion of lens
 - Hold both lids

UMSL Optometry

Fitting Basics Lens Removal

Fitting Basics Scleral Lens Handling

Fitting Basics Scleral Lens Handling

- Educate patient about proper lens orientation upon insertion
 - Dots at 6 o'clock

UMSL Optometry

Parameter Considerations

- Common Parameter Changes:
 - Sagittal Height
 - Overall diameter (OAD)
 - Optic Zone Diameter (OZD)
 - Base Curve (BC)
 - PC width
 - PC radius of curvature
 - Center Thickness

UMSL Optometry

Parameter Considerations

- Common Parameter Changes:
 - Sagittal Height
 - Adjustment to the transition zone
 - Allows clinician to increase or decrease central lens clearance without adjusting base curve or peripheral lens curves
 - Indicate to lab the amount of clearance you want to gain or lose

UMSL Optometry

Patient GH

- Fit in 2013
- OD: 7.50 / -7.00 / 14.5 20/50
- OS: 7.5 / -7.50 / 14.5 20/40
- SLE: central touch in both eyes
 - Increase diameter; increase sagittal height; steepen lens

UMSL Optometry

Patient GH

- New Scleral Lens
 - OD: 7.5 / 14.8 / -7.50 -1.25 x 013 20/30
 - -1.5 steep limbal zone
 - OS: 7.18 / 14.8 / -8.25 -0.75 x 162 20/40+
 - -1 step flat limbal zone; 1 step flat scleral zone

JMSL Optometry

Parameter Considerations

- Common Parameter Changes:
 - Overall diameter (OAD) / Optic Zone Diameter (OZD)
 - Can increase or decrease
 - More likely to increase
 - If you need additional central clearance
 - Can increase OZD which will increase OAD
 - If you need more clearance at limbus
 - Can increase OZD which will increase OAD

Parameter Considerations

- · Common Parameter Changes:
 - Base Curve (BC)
 - Typically adjusted during initial fit
 - Flatter base curve to address peripheral lens tightness or excessive central clearance
 - Steeper base curve to increase central clearance or loose periphery
 - If you need to adjust the central clearance, but you are happy with peripheral alignment
 - Adjust sagittal height NOT base curve

UMSL Optometry

Parameter Considerations

- Common Parameter Changes:
 - PC width / PC radius of curvature
 - Make wider or smaller
 - Steeper or flatter
 - Toric Haptics
 - Center Thickness
 - Can increase or decrease
 - Considerations: flexure and edema

UMSL Optometry

Parameter Considerations • Scleral Curve Changes Steeper PCs Sag: 2.8 mm Flatter PCs Sag: 2.7 mm

Tips for Fitting

- 1. Go flatter than flat K value for initial lens selection
- 2. Use Fluorescein for initial lens selection
 - Use BLUE Light GET THE BIG PICTURE
 - Use WHITE Light to evaluate everything else
- 3. Analyze Superior and Inferior lens edges in Primary Gaze
- 4. Try not to make parameter changes at dispensing
- 5. Toric Haptics spin lens and watch for quick return

Tips for Follow-up

- 1. Ask patient: "How do you take care of your lenses"
- 2. Follow-up should be at least 2 hours after lens insertion
- 3. Paint the front of the lens to look for fluid exchange
- 4. Remove lens and evaluate cornea

UMSL Optometry

Troubleshooting

- Problem: Decreased vision after insertion
 - Often caused by mucin build-up in tear lens
 - Begins ~30min to 4 hrs after insertion
- Possible Solutions
 - Reinsert lens with fresh solution/ use solution mixture
 - Rx lid hygiene
 - Rinse eye prior to insertion
 - Refit with decreased central clearance/better peripheral alignment
 - Change lens material or Lens coating Hydra-PEG

UMSL Optometry

Troubleshooting

• Decreased Vision after Insertion

UMSL Optometry

Patient states vision gets foggy after 2 hours of wear and gradual decreases in clarity over time

~200 microns clearance

NaFL seeps under lens superiorly OD and 360 OS

Re-order: steeper PC OU

Troubleshooting

Conjunctival Prolapse

UMSL Optometry

Troubleshooting

Conjunctival Prolapse

- Caused by negative pressure under the lens
- More prominent in patients with loose conjunctival tissue or elderly patients
- · Check for neovascularization
- Solution
 - 1. Fit a asymmetrical back surface scleral lens to help alleviate the problem
 - 2. Decrease limbal clearance

UMSL Optometry

Troubleshooting

Conjunctival Prolapse

- Prolapse with tight PC
 - Flatten the PC

Troubleshooting

Conjunctival Prolapse

- Prolapse with peripheral alignment
 - Decrease the limbal clearance
 - 2 ways:
 - · Flatten the BC
 - Decrease the reverse curve

UMSL Optometry

Troubleshooting

- · Problem: Diffuse Corneal Staining on follow-up
 - Due to fill media, care systems, AT's or meds
 - Can be difficult to isolate cause
 - Can be more significant if tear exchange is low
- · Possible solutions:
 - Switch Care systems
 - Rx 0.9%NaCl inhalation solution
 - Completely rinse MPS off lens
 - Confirm compliance with prescribed care

UMSL Optometry

A severe case of stain

- 27 yo patient with Keratoconus OU
 - Wearing scleral lens OU 2014
 - Hx of Corneal Crosslinking OU ('09)
- Presents 7/2017
 - Cc: blurred vision OS> OD
 - using clear care to clean lenses
 - sometimes sleeps in lenses
 - uses Boston Advance to fill lenses prior to insertion

UMSL Optometry

A severe case of stain

- · 27 yo patient with Keratoconus OU
 - VA 20/30- OD 20/125 OS
 - SLE: Punctate staining OU, mild corneal edema OS
 - 150 microns clearance OU
 - Adequate limbal clearance
 - No peripheral blanching or impingement
- Plan: educated patient about proper lens care; RTC 1 week fitting

UMSL Optometry

Troubleshooting

- Problem: Poor surface wetting
 - MGD can contribute / cause problem
 - Multipurpose Solution (MPS) may cause problems
 - Lens Material
- · Possible Solutions:
 - Evaluate lid margins/ tear film
 - Prescribe lid hygiene if necessaryChange MPS / Lens material
 - Lens Coating hydra-PEG

39 yo female PKP OD / KCN OS Jupitor scleral OU – Tyro 97 Issues with surface wettability

Re-order OU with hydra-PEG Patient LOVES hydra-PEG – has significantly decreased surface deposits and she does not have to remove to clean during the day.

UMSL Optometry

Troubleshooting

- Problem: Poor surface wetting (old lens)
 - Lens Coating break-down
 - Lens Material break-down
- Possible Solutions:
 - Order new lenses (with HydraPEG)
 - Clean with laboratory cleaner
 - Prescribe Progent

Troubleshooting

- Problem: Corneal edema at follow-up
 - Can arise after weeks / months => f/u is important!
 - More common in post PK corneas
 - Higher risk in corneas with low endothelial cell count
 - Consider Dk/L as Dk is likely not the issue
- Possible Solutions:
 - Prevention: do endothelial cell count before fitting (1000 +?)
 - Scrutinize grafts at every visit!
 - Educate graft patients on symptoms of rejection: pain, light sensitivity, redness, blurred vision

UMSL Optometry

Troubleshooting

- Keratoconus and Fuchs! Oh My!
- 64 you Female with Keratoconus
 - Presents with blurry vision in scleral lenses and irritation OU
 - Lenses are uncomfortable and dry
 Redness OU
 - Interested in Eyeprint PRO
 - 20/40- OD 20/30- OS HVID 12mm
 - OD: +0.75 -4.00 x 175 20/40- OS: +1.50 -3.50 x 180 20/30-
 - Pingecula Temporal and Nasal OU

UMSL Optometry

Case TS: KCN and Fuchs • Initial FITTING • HVID 12mm; Pingecula T/N OU - 8.4 base curve 4.6 sagittal height 17.0 diameter - OR: +3.75 -0.75 x 180 20/25-- +4.00 -0.75 x 180 20/30 • Options to Troubleshoot Pingecula: - Microvault - Toric PC **UMSL** Optometry

Case TS: KCN and Fuchs

- Toric Haptics/Peripher
 - Steepen the Vertic horizontal
 - Flatten the hortizo
 - Always evaluate th

- MicroVault
 - Confirm lens design can incorporate microvaults
 - Measure location and size

UMSL Optometry

Troubleshooting

- Problem: Discomfort immediately after insertion
 - Ask patient where discomfort is located
 - Poor peripheral fit too flat
 - Base curve too flat- central bearing or touch
 - Mucus adhered to back surface of lens
- Possible solutions:
 - Adjust peripheral systems for proper alignment
 - Select steeper base curve
 - Clean inside of bowl daily; prescribe Progent (Menicon) to remove mucus

UMSL Optometry

Troubleshooting

- Problem: Discomfort after several hours of wear
 - Follow-up patient questions
 - Does your eye become red while wearing the lens?
 - Does your eye become red after lens removal?
 - Where is the irritation located?
 - Do you notice any changes in your vision?
 - What solution(s) are you using for lens application?

UMSL Optometry

Troubleshooting

- Problem: Discomfort after several hours of wear
 - Poor peripheral fit (too steep)
 - Lens is too small to support its weight
 - Corneal chamber too small
- Possible solutions:
 - Adjust peripheral systems for proper alignment
 - Increase surface area of scleral curves
 - Increase OAD or corneal chamber size if appropriate

UMSL Optometry

Troubleshooting

- Problem: <u>Lens hurts upon removal with subsequent</u> <u>difficulty wearing it the next day</u>
 - Poor peripheral fit scleral compression
 - Causing rebound hyperemia and inflammation
- · Possible solutions:
 - Changing Diameter
 - Changing peripheral curves

UMSL Optometry

Troubleshooting

- Problem: Bubbles under the lens
- Too much sagittal height/Too flat peripheral curves
 - Improper insertion
 - Fenestration hole
- Possible Solutions:
 - Fill bowl completely with solution prior to insertion
 - Remove fenestration hole
 - Central bubble: Adjust lens parameters to decrease sagittal height
 - Peripheral bubbles: steepen peripheral curves or increase lens diameter

Patient AB

- · Examination findings
 - MR:
 - OD +0.75 -3.50 x 060 20/70+
 - OS -0.25 -0.75 x 142 20/100+
 - Lens options
 - Specialty Corneal lens
 - Patient attempted to wear and could not adapt
 - Intralimbal design
 - Patient attempted to wear and could not adapt
 - Scleral Lens

UMSL Optometry

Final Thoughts

- Consider mini-scleral / scleral for appropriate patients
 - Select one lab, one design
- · First couple fits are the most challenging
- Scleral lenses are not going away
- · Consultants are a great resource
- Huge practice building opportunity