Scleral Lenses 101
~the basics and beyond

Julie DeKinder, O.D. FAAO, FSLS
Diplomate, Cornea, Contact Lenses and Refractive Technologies

Overview

• Clinical Indications
• Advantages and Challenges
• Terminology
• Anterior eye anatomy
• Basic Design Features
• Instrumentation
• Fitting basics – lens selection, fitting, evaluation, follow-up
• Tips and Troubleshooting

Clinical Indications

• Vision Improvement
 – Correcting the irregular cornea
 • Corneal Ectasia
 – Primary – Keratoconus, Keratoglobus, Pellucid marginal degeneration (INTACS, CXL)
 – Secondary – post-refractive surgery, corneal trauma
 • Cornea Transplant
 • Corneal Degenerations
 – Normal Cornea
 • Presbyopia, moderate to high corneal astigmatism

Clinical Indications

• Ocular Surface Protection
 – Dry Eye
 – Incomplete lid closure
 – Sjorgen’s Syndrome
 – Stevens-Johnson Syndrome
 – RCE / corneal abrasions
 – Graft host disease
 – Infiltrative keratitis

Persistently-off CXL (16 year old male)

– Constant epithelial defect for 2 months
• Neomycin/dexamethasone, Zirgan, Oflaxacin, doxycycline, acyclovir, AT, BCL
– Applied a scleral contact (15.6 diameter)
• Wore extended wear for 6 days
• Cont Maxitrol and oflaxacin drops
– Lens removed after 6 days of wear
• epithelial defect healed
• overlying corneal haze

Corneal Abrasion

• Healing response attributed:
 – Oxygenation
 – Moisture
 • Constant tear film
 – Protection of the corneal epithelium
 – Minimal abrasion
• Allows epithelium to migrate, adhere, and proliferate over the persistent epithelial defect.
Clinical Indications

- Cosmetic/Sports
 - Hand-painted scleral lenses
 - Ptosis
 - Water sports
- Lens failure in other designs

Advantages of Scleral GPs vs Corneal GP

- Centration
 - Fitting a “regular” part of the eye
- Lens Retention
 - Minimal chance of inferior standoff
- Comfort
 - Reduced lid interaction; no corneal interaction
- Vision
 - Masking severe corneal irregularity

Challenges associated with scleral lenses

- Handling
 - Difficult I and R (initially)
 - Apprehensive patients
- Fitting
 - Subtle fit indications
 - Increased chair time
- Physiology
 - Dk/A – Oxygen must diffuse over great distance
 - Long-term effects of scleral lens wear are unknown

Terminology

- Classification
 - Corneo-scleral 12.9mm to 13.5mm
 - Semi-Scleral 13.6 mm to 14.9mm
 - Mini-Scleral 15.0mm to 18.00mm
 - Full-Scleral 18.1mm to 24+

Anatomy and Shape of the Anterior Ocular Surface

- Maximum scleral lens size for normal eye: 24mm
- Scleral Shape Study

Assuming 12mm cornea diameter – maximum physical diameter of a scleral lens ~24 mm
Anatomy and Shape of the Anterior Ocular Surface

• Corneal Toricity does not typically extend to sclera

• The ocular surface beyond the cornea is nonrotationally symmetrical
 – Asymmetrical
 – The entire nasal portion typically flatter compared to the rest

Anatomy and Shape of the Anterior Ocular Surface

• Clinical Consequences
 – Temporal-Inferior decentration of scleral lenses
 • Inferior decentration
 – Weight/gravity
 – Eyelid pressure
 • Temporal
 – Flatter nasal elevation
 • Conjunctival Prolapse

Basic Design Features

• Spherical Design
 • Concentric symmetrical (spherical) scleral lens
 • Non-toric back surface

 – Optic Zone
 • Centermost zone
 • Optics/Lens power
 – Anterior surface
 • Back surface
 – Ideally mimics corneal shape
 • Completely vaults cornea

Basic Design Features

• Spherical Design
 • Concentric symmetrical (spherical) scleral lens
 • Non-toric back surface

 – Transition Zone
 • Mid-periphery or limbal zone
 • Creates the sagittal height
 • Can be reserve geometry
 • Completely vaults limbus

Basic Design Features

• Spherical Design
 • Concentric symmetrical (spherical) scleral lens
 • Non-toric back surface

 – Landing Zone
 • Area of the lens that rests on anterior ocular surface
 • Scleral zone or haptic
 • Alignment to provide even pressure distribution is key

Example Parameters:

BC: 7.50
PC1: 7.85 (if reverse geometry 6.89)
PC2: 9.00
PC3: 12.25
PC4: 14.00
Basic Design Features

• Toric Lens Designs
 – Front Surface Toric -
 • Anterior surface front toric optics to improve vision
 • Located on the front surface of the central optical zone
 • Indicated when residual cylinder over-refraction is found
 • Needs stabilization
 – Dynamic stabilization zones or prism ballast
 – LARS

• Toric Lens Designs
 – Back Toric Haptics
 • Landing zone is made toric to improve lens fit
 • Does not interfere with central zone of scleral lens
 • Better ocular health
 – Fewer areas of localized pressure
 – Decreased bubble formation
 – Longer wearing time and better patient comfort
 • More frequently needed in larger diameter sclerals

• Toric Lens Designs
 – Bitoric both anterior optics and back toric haptics
 • Front surface toric optical power
 • Back surface toric periphery
 • No need for lens stabilization

• Multifocal Scleral lens design
 – Simultaneous Multifocal Lens Design
 • Aspheric or concentric
 • Center Near and Center Distance Designs
 – Can adjust near powers
 – Can adjust zone size
 • Not all scleral lens designs have a MF option

Multifocal Scleral lens design
 – Center of cornea
 – OD
 – Visual axis
 – Lens
 – Near zone

Basic Design Features

- Lens Material
 - High(est) Dk lens material; plasma or hydra-PEG
 - Considerably thicker when compared to corneal GP
 - 250 microns to 500 microns
 - Optimum Extreme, Menicon Z

- Increasing Oxygen transmissibility
 - 1. high Dk material (Dk > 125)
 - 2. minimal tear clearance behind the lens (<200)
 - 3. Reduced center thickness of the lens (<.250)

Fitting Basics

- Hydra-PEG
 - Polyethylene glycol (PEG) – base polymer
 - Covalently bonded to the lens surface
 - Creates a wetting ocular surface, increases surface wettability, increases lubricity, decreases protein and lipid deposits, improves TBUT.

Fitting Basics

- Completely vault the cornea and limbus while aligning to the bulbar conjunctiva

Fitting Basics

- 1. Diameter
- 2. Clearance
- 3. Landing Zone Fit
- 4. Lens Edge
- 5. Asymmetrical Back Surface Design
 - Some trial sets are toric back surface
- 6. Lens Power

Fitting Basics

- How can I vault a steep cornea with a flat lens?
 - BC much flatter than “K”
 - Very steep cornea

Fitting Basics

- 1. Diameter
 - Choose a Fitting Set
 - Direct vs Indirect control
 - Laboratory warranty/exchange policy
 - Overall Diameter
 - Larger – more clearance needed, ectasias
 - Smaller – easier to handle, less clearance
Fitting Basics

• 1. Diameter
 - HVID
 • <12mm
 - Start with a 16.0 mm or smaller lens
 • >12mm
 - Start with a 16.0 mm or larger lens
 - Diameter of the optical zone and the transition zone chosen roughly 0.2mm larger than the corneal diameter

Fitting Basics

• 2. Clearance
 - Minimum of ~100 microns
 - Typically aim for 200-300 microns after settling
 - Maximum of 600 (if desired)
 - Base Curve Determination
 • Select an initial base curve that is flatter than the flat k value
 • Use 14 mm chord OCT, measure sagittal depth

Fitting Basics

• Evaluate overall corneal chamber appearance
 - Diffuse beam, low mag, medium illumination
 - Observe centration, areas of bearing, tear lens appearance, look for bubbles

Fitting Basics

• Evaluate central clearance
 - Compare lens thickness to tear lens thickness and estimate central clearance in microns

Fitting Basics

Look for continuity of the tear lens...

Acceptable clearance: Too little clearance:
Fitting Basics

- Look for continuity of the tear lens…

Fitting Basics

- Evaluate the Limbal Clearance…

Fitting Basics

- Change lens base curve/sagittal depth until desired central clearance is reached
 - Considerations:
 - All scleral lenses will settle over a period of hours
 - Expect ~90 to 150 microns settling
 - Aim for 150 to 300 microns after settling
 - Build-in settling time into fitting session ~30 min

Fitting Basics

- UMSL Study:
 - No significant settling after 4 hours of wear
 - Most settling within the 1st hour
 - Large Diameter Scleral settle ~90 microns, slower
 - Mini Scleral ~130 microns, faster

Fitting Basics

- Evaluate remaining corneal chamber
 - Optic Section
 - Sweep limbus to limbus noting tear lens thickness
 - Looking for tears in optic section beyond the limbus and should increase in thickness toward the central cornea

Adequate limbal clearance is critical for an acceptable fit and good tear exchange
Fitting Basics

• Anterior Segment OCT

Fitting Basics

• 3/4. Landing Zone Fit/Edge
 – Bulbar conjunctival vessels
 – Look for blanching
 • Inappropriate scleral curve alignment
 • Typically indicates PC is too tight
 • Or new toric back surface haptics
 – Confirm no lens movement
 – Perform all peripheral lens evaluations in Primary Gaze.

• Ideal alignment when vessels course unobstructed under the scleral curves
Fitting Basics

5. Asymmetrical Back Surface Design
 - Allows for more equal pressure distribution
 - Can help center a inferiorly decentered lens
 - Flat and steep meridian
 • Can adjust either independently
 • Flat meridian is typically marked
 • Will lock into place

6. Lens Power/Over-Refraction
 - Expect close to spherical OR
 - If OR yields significant cylinder check - flexure
 • Do over-keratometry or over-topography
 - Residual Cylinder
 • Front surface toric
 • Usually has a great visual outcome

Fitting Basics

Design and Order
 - Often lens modifications will need to be made from the best trial lens fit
 - Lab Consultants are helpful
 • Some warranties require consultation when re-ordering

Scleral Lens Handling

Insertion
 - Prepare Lens
 • Large DMV
 • Clean lens, rinse
 - Fill with non-preserved sol
 • 0.9% NaCl inhalation sol
 • Off label: Addipak, Modudose
 • Lacripure, ScleralFil (buffered)
 • Refresh Optive single vials
 • Celluvisc

Is buffered better??

<table>
<thead>
<tr>
<th>ScleralFil</th>
<th>CoreCare</th>
<th>StorzPost</th>
<th>Mediposure</th>
<th>Addipak</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.63</td>
<td>6.89</td>
<td>5.33</td>
<td>5.17</td>
<td>4.67</td>
</tr>
<tr>
<td>7.52-7.53</td>
<td>6.87-6.95</td>
<td>5.21-5.41</td>
<td>4.78-5.38</td>
<td>4.59-4.82</td>
</tr>
<tr>
<td>0.20</td>
<td>0.00</td>
<td>0.24</td>
<td>0.00</td>
<td>0.32</td>
</tr>
<tr>
<td>0.015</td>
<td>0.001</td>
<td>0.079</td>
<td>0.215</td>
<td>0.107</td>
</tr>
</tbody>
</table>

Current accepted pH range of 6.60 to 7.80 for ocular comfort
Fitting Basics
Lens Insertion
• Place paper towels on patient’s lap
• Have patient tuck chin to chest and look straight down
• Have patient hold lower lid
• Clinician hold upper lid
• Insert lens straight onto cornea

Fitting Basics
Scleral Lens Handling
• Removal
 – Loosen Lens – gently nudge lens
 – Medium DMV
 • placed on inferior portion of lens
 – Hold both lids

Fitting Basics
Lens Application

Fitting Basics
Lens Removal

Fitting Basics
Scleral Lens Handling

UMSL Optometry
Fitting Basics
Scleral Lens Handling
• Educate patient about proper lens orientation upon insertion
 – Dots at 6 o’clock

Parameter Considerations
• Common Parameter Changes:
 – Sagittal Height
 – Overall diameter (OAD)
 – Optic Zone Diameter (OZD)
 – Base Curve (BC)
 – PC width
 – PC radius of curvature
 – Center Thickness

Parameter Considerations
• Common Parameter Changes:
 – Sagittal Height
 • Adjustment to the transition zone
 • Allows clinician to increase or decrease central lens clearance without adjusting base curve or peripheral lens curves
 • Indicate to lab the amount of clearance you want to gain or lose

Patient GH
• New Scleral Lens
 • OD: 7.5 / 14.8 / -7.50 / -1.25 x 013 20/30
 – 1 step steep limbal zone
 • OS: 7.18 / 14.8 / -8.25 / -0.75 x 162 20/40+
 – 1 step flat limbal zone; 1 step flat scleral zone

Patient GH
• Fit in 2013
• OD: 7.50 / -7.00 / 14.5 20/50
• OS: 7.5 / -7.50 / 14.5 20/40
• SLE: central touch in both eyes
 • Increase diameter; increase sagittal height; steepen lens

Parameter Considerations
• Common Parameter Changes:
 – Overall diameter (OAD) / Optic Zone Diameter (OZD)
 • Can increase or decrease
 – More likely to increase
 • If you need additional central clearance
 – Can increase OZD which will increase OAD
 • If you need more clearance at limbus
 – Can increase OZD which will increase OAD
Parameter Considerations

- **OZD changes:** often done to improve fit
 - **OZD increase without BC compensation**

 ![Diagram showing OZD: 8.2 mm BC: 7.5 mm](OZD_8.2mm_BC_7.5mm.png)

 Sag: 1.2 mm
 ▲ 300 mic
 Sag: 1.5 mm

- **Increase OZD with BC compensation**

 ![Diagram showing OZD: 9.0 mm BC: 8.25 mm](OZD_9.0mm_BC_8.25mm.png)

 Sag: 1.2 mm
 ▲ 0 mic
 Sag: 1.2 mm

 * Increased OZD without increasing sagittal height of lens

Parameter Considerations

- **Common Parameter Changes:**
 - **Base Curve (BC)**
 - Typically adjusted during initial fit
 - Flatter base curve to address peripheral lens tightness or excessive central clearance
 - Steeper base curve to increase central clearance or loose periphery
 - If you need to adjust the central clearance, but you are happy with peripheral alignment
 - Adjust sagittal height NOT base curve

Parameter Considerations

- **PC width / PC radius of curvature**
 - Make wider or smaller
 - Steeper or flatter
 - Toric Haptics

- **Center Thickness**
 - Can increase or decrease
 - Considerations: flexure and edema

Parameter Considerations

- **Scleral Curve Changes**

 ![Diagram showing Steeper PCs and Flatter PCs](Scleral_Curve.png)

 Steeper PCs
 ▲ 100 mic
 Flatter PCs
 Sag: 2.8 mm
 Sag: 2.7 mm

Tips for Fitting

- **1. Go flatter than flat K value for initial lens selection**
- **2. Use Fluorescein for initial lens selection**
 - Use BLUE Light – GET THE BIG PICTURE
 - Use WHITE Light – to evaluate everything else
- **3. Analyze Superior and Inferior lens edges in Primary Gaze**
- **4. Try not to make parameter changes at dispensing**
- **5. Toric Haptics – spin lens and watch for quick return**
Tips for Follow-up

• 1. Ask patient: “How do you take care of your lenses”
• 2. Follow-up should be at least 2 hours after lens insertion
• 3. Paint the front of the lens to look for fluid exchange
• 4. Remove lens and evaluate cornea

Troubleshooting

• Problem: Decreased vision after insertion
 – Often caused by mucin build-up in tear lens
 – Begins ~30min to 4 hrs after insertion

• Possible Solutions
 – Reinsert lens with fresh solution/ use solution mixture
 – Rx lid hygiene
 – Rinse eye prior to insertion
 – Refit with decreased central clearance/better peripheral alignment
 – Change lens material or Lens coating – Hydra-PEG

Troubleshooting

• Decreased Vision after Insertion
 Patient states vision gets foggy after 2 hours of wear and gradual decreases in clarity over time
 ~200 microns clearance OD/OS
 NaFL seeps under lens superiorly OD and 360 OS
 Re-order: steeper PC OU

Troubleshooting

Conjunctival Prolapse
 – Caused by negative pressure under the lens
 – More prominent in patients with loose conjunctival tissue or elderly patients
 • Check for neovascularization
 • Solution
 – 1. Fit a asymmetrical back surface scleral lens to help alleviate the problem
 – 2. Decrease limbal clearance

Troubleshooting

• Conjunctival Prolapse
 – Prolapse with tight PC
 – Flatten the PC
Troubleshooting

Conjunctival Prolapse

- Prolapse with peripheral alignment
 - Decrease the limbal clearance
 - 2 ways:
 - Flatten the BC
 - Decrease the reverse curve

A severe case of stain

- 27 yo patient with Keratoconus OU
 - Wearing scleral lens OU – 2014
 - Hx of Corneal Crosslinking OU (’09)
- Presents 7/2017
 - Cc: blurred vision OS> OD
 - using clear care to clean lenses
 - sometimes sleeps in lenses
 - uses Boston Advance to fill lenses prior to insertion

Troubleshooting

- Problem: Diffuse Corneal Staining on follow-up
 - Due to fill media, care systems, R7’s or meds
 - Can be difficult to isolate cause
 - Can be more significant if tear exchange is low

 Possible solutions:
 - Switch Care systems
 - Rx 0.9%NaCl inhalation solution
 - Completely rinse MPS off lens
 - Confirm compliance with prescribed care

A severe case of stain

- 27 yo patient with Keratoconus OU
 - VA 20/30 OD 20/125 OS
 - SLE: Punctate staining OU, mild corneal edema OS
 - 150 microns clearance OU
 - Adequate limbal clearance
 - No peripheral blanching or impingement

 Plan: educated patient about proper lens care; RTC 1 week fitting

Troubleshooting

- Problem: Poor surface wetting
 - MGD can contribute / cause problem
 - Multipurpose Solution (MPS) may cause problems
 - Lens Material

 Possible Solutions:
 - Evaluate lid margins/ tear film
 - Prescribe lid hygiene if necessary
 - Change MPS / Lens material
 - Lens Coating – hydra-PEG

39 yo female
PKP OD / KCN OS
Jupiter scleral OU – Tyrop 97
Issues with surface wettability

Re-order OU with hydra-PEG
Patient LOVES hydra-PEG – has significantly decreased surface deposits and she does not have to remove to clean during the day.

Troubleshooting

- Problem: Poor surface wetting (old lens)
 - Lens Coating break-down
 - Lens Material break-down

 Possible Solutions:
 - Order new lenses (with HydraPEG)
 - Clean with laboratory cleaner
 - Prescribe Progent
Troubleshooting

Case TS: KCN and Fuchs

- Keratoconus and Fuchs! Oh My!
- 64 you Female with Keratoconus
 - Presents with blurry vision in scleral lenses and irritation OU
 - Lenses are uncomfortable and dry
 - Redness OU
- Interested in Eyeprint PRO
- 20/40 - OD
- 20/30 - OS
- HVID 12mm
- OD: +0.75 -4.00 x 175 20/40–
- OS: +1.50 -3.50 x 180 20/40–
- Pinguecula Temporal and Nasal OU

Possible Solutions:
- Prevention: do endothelial cell count before fitting (1000 +?)
- Educate graft patients on symptoms of rejection: pain, light sensitivity, redness, blurred vision
- Consider Dk/L as Dk is likely not the issue
- More common in post PK corneas
- Can arise after weeks / months => f/u is important!
- Options to Troubleshoot Pinguecula:
 - Microvault
 - Toric PC

Case TS: KCN and Fuchs

- Initial FITTING
- HVID 12mm; Pinguecula T/N OU
 - 8.4 base curve 4.6 sagittal height 17.0 diameter
 - OR: +3.75 -0.75 x 180 20/25–
 - +4.00 -0.75 x 180 20/30
- Options to Troubleshoot Pinguecula:
 - Microvault
 - Toric PC
Case TS: KCN and Fuchs

- Toric Haptics/Peripheral Curves
 - Steepen the Vertical meridian to relieve pressure in the horizontal
 - Flatten the horizontal meridian
 - Always evaluate the location of the flat meridian markings

- MicroVault
 - Confirm lens design can incorporate microvaul ts
 - Measure location and size

Troubleshooting

• Problem: Discomfort immediately after insertion
 - Ask patient where discomfort is located
 - Poor peripheral fit – too flat
 - Base curve too flat - central bearing or touch
 - Mucus adhered to back surface of lens

• Possible solutions:
 - Adjust peripheral systems for proper alignment
 - Select steeper base curve
 - Clean inside of bowl daily; prescribe Progent (Menicon) to remove mucus

Troubleshooting

• Problem: Discomfort after several hours of wear
 - Follow-up patient questions
 - Does your eye become red while wearing the lens?
 - Does your eye become red after lens removal?
 - Where is the irritation located?
 - Do you notice any changes in your vision?
 - What solution(s) are you using for lens application?

• Problem: Discomfort after several hours of wear
 - Poor peripheral fit (too steep)
 - Lens is too small to support its weight
 - Corneal chamber too small

• Possible solutions:
 - Adjust peripheral systems for proper alignment
 - Increase surface area of scleral curves
 - Increase OAD or corneal chamber size if appropriate

Troubleshooting

• Problem: Discomfort after several hours of wear
 - Poor peripheral fit – scleral compression
 - Causing rebound hyperemia and inflammation

• Possible solutions:
 - Changing Diameter
 - Changing peripheral curves

Troubleshooting

• Problem: Bubbles under the lens
 - Too much sagittal height/Too flat peripheral curves
 - Improper insertion
 - Fenestration hole

• Possible Solutions:
 - Fill bowl completely with solution prior to insertion
 - Remove fenestration hole
 - Central bubble: Adjust lens parameters to decrease sagittal height
 - Peripheral bubbles: steepen peripheral curves or increase lens diameter
Patient AB

- History: KCN OU; crosslinking OU
- Lens history: soft toric lenses

Patient AB

- Examination findings
 - MR:
 - OD +0.75 -3.50 x 060 20/70+
 - OS -0.25 -0.75 x 142 20/100+
 - Lens options
 - Specialty Corneal lens
 - Patient attempted to wear and could not adapt
 - Intralimb design
 - Patient attempted to wear and could not adapt
 - Scleral Lens

Final Thoughts

- Consider mini-scleral / scleral for appropriate patients
 - Select one lab, one design
- First couple fits are the most challenging
- Scleral lenses are not going away
- Consultants are a great resource
- Huge practice building opportunity